Evaluating low cost chemical sensors for air pollution measurement

Peter M Edwards¹, Alastair C Lewis², James D Lee², Marvin Shaw^{1,2}, Mat J Evans^{1,2}, Sarah J Moller^{1,2}, Katie Smith¹, Matthew Ellis¹, Stefan Gillot³, A White⁴

[1] Wolfson Atmospheric Chemistry Laboratories, University of York, Heslington, York, UK.

[2] National Centre for Atmospheric Science, University of York, Heslington, York, UK.

[3] Environment Department, University of York, Heslington, York, UK.

[4] Department of Electronics, University of York, Heslington, York, UK.

Based on Lewis et al., Faraday Discuss. 2015, DOI: 10.1039/C5FD00201J

Sensors – a revolution in air pollution measurement?

- Current approach offers high quality measurements but poor spatial coverage.
- Distributed sensors could greatly improve coverage personal exposure.
- Relies on assumption that the sensor data is fit for purpose.

Some of the hype.....

[+]Enlarge

theguardian

Lord Drayson takes on UK air pollution crisis with new smart sensor

CleanSpace service uses shared data from personal air quality sensors to create network of pollution hotspots

Departments - Collections - Blogs -	AirPublic proposes to put sensors on London's rental bikes so as to fill in the gaps in air quality sensor networks.	illuted routes and add to pressure on local and central government to act on the problem. Photograph: REX utterstock			
	By Jeremy Green Jul 07. 2015 MachinaTion Share (f) (m) (8)				
BY U.S. EPA.	A project to mount air quality sensors on Transport for London's (TFL) hire bikes has been ita will be used to provide . The event was organised				
15 0 4 F V	Linstitute	Bearch ODI 60 Contact us Newsletters			
p air quality Email 📷 Print 📮	he Heathrow:	Democratising air data to meet local needs			
ICENE r quality	on's air pollution	About			
	y limits	Background			
	summer-showcase	About the data			
	Breathe Heathrow uses air quality sensors t affects their area, bringing more data into th	b help residents understand how the airport e hands of communities to address local needs			

(1991)

 Air Quality Tester function (Excellent / Good / Moderate / Bad) by collecting indoor air quality levels

 \odot \bigcirc 139-2432 12 08 HIGHSTAR

Air.Air!

7.0°C Good

Good

AIR MENTO

518

National Centre for Atmospheric Science

Wolfson Atmospheric Chemistry Laboratories

What is in the box?

sensor

/ˈsɛnsə/ 🐠

noun

noun: sensor; plural noun: sensors

a device which detects or measures a physical property and records, indicates, or otherwise responds to it.

Sensor

Micro-electro-mechanical (MEMS) device

Sensor interferences from co-pollutants

Sensor		Compound				Co-pollutants		
	CO	SO ₂	NO	O_3	NO ₂	CO ₂	H_2	%RH ^ª
CO - B4	0.378	-0.013	0.000	0.0200	0.032	0.000	-0.032	0.201
OX-B421	0.000	-0.016	-0.110	0.439	0.44	9.5 x 10 ⁻⁵		0.560
SO ₂ -B4	0.013	0.210	0.023	-0.014	-0.32	9.8 x 10 ⁻⁶		0.000
NO-B4	0	0.007	0.558	-0.011	-0.590	1.8 x 10 ⁻⁵		-0.303
NO2-B4	0	0.004	-0.008	0	0.148	2.3 x 10 ⁻⁵		0.000

Working electrode responses (in mV ppb⁻¹ of co-pollutant) induced by the presentation of co-pollutants in zero air across five electrochemical sensors

Potentially significant interference

NO₂ sensor interference example

- NO₂ electrochemical sensor has a small cross sensitivity to CO₂
- But CO_2 is generally in huge excess to NO_2 .
- \circ At low [NO₂] the sensor is primarily sensing CO₂

National Centre for

Twenty sensor intercomparison

- Reference methods used UV, Chemiluminescence, GC, TEOM-FDMS
- o Devices initially calibrated to the reference value (e.g. slope applied on 11 Oct)

Ozone intercomparison – a success story?

Ozone sensors in more detail

- Collective accuracy is good, but individual accuracy is poor.
- Useable for research?? Probably.
- $\circ~$ For the public?? They are not overtly misleading, since no collective bias

- Bias of 3.2 ± 1.7 sensors over-measure vs. reference
- Poorer agreement on trends –some other parameter e.g. CO₂?
- Misleading public data widespread exceedances indicated

Not all sensors components are equal – e.g. PM

• Large observed variability in sensor performance.

• Not obvious which sensors / technologies used in commercial units.

Can we separate the signals?

- \circ $\;$ Interferences from other variables are the key sensor weakness
- o These can interact with one another in non-linear ways

Can we separate the signals?

o Interferences from other variables are the key sensor weakness

• These can interact with one another in non-linear ways

Conclusions

- Low cost sensors are an **exciting opportunity**.
- Wide range of sub-components of variable quality.
- **Publication bias**, few independent tests reported, limited academic publication.
- **Cross-interferences** from other pollutants.
- Unit to unit **reproducibility** can be very poor.
- Can generate misleading information over-reporting is commonplace.
- 'Miniaturized' instruments using known methodologies look more promising, e.g. OPCs.
- Long-term stability is untested.
- Statistical methods offer considerable promise, if backed up by lab work.
- Buyer beware!

